The Taylor Series for Bandlimited Signals
نویسندگان
چکیده
We study a special type of infinite product, called an infinite product of Cardano type, and we obtain its Taylor series. We prove that Hadamard's factorization of bandlimited signals is given by an infinite product of Cardano type, and apply our results to obtain the Taylor series for bandlimited signals.
منابع مشابه
A TAYLOR SERIES APPROACH FOR SOLVING LINEAR FRACTIONAL DECENTRALIZED BI-LEVEL MULTI-OBJECTIVE DECISION-MAKING UNDER FUZZINESS
This paper presents a Taylor series approach for solving linear fractional de-centralized bi-level multi-objective decision-making (LFDBL-MODM) problems with asingle decision maker at the upper level and multiple decision makers at the lower level.In the proposed approach, the membership functions associated with each objective(s) ofthe level(s) of LFDBL-MODM are transformed by using a Taylor s...
متن کاملSolving the liner quadratic differential equations with constant coefficients using Taylor series with step size h
In this study we produced a new method for solving regular differential equations with step size h and Taylor series. This method analyzes a regular differential equation with initial values and step size h. this types of equations include quadratic and cubic homogenous equations with constant coeffcients and cubic and second-level equations.
متن کاملThe Combined Reproducing Kernel Method and Taylor Series for Handling Fractional Differential Equations
This paper presents the numerical solution for a class of fractional differential equations. The fractional derivatives are described in the Caputo cite{1} sense. We developed a reproducing kernel method (RKM) to solve fractional differential equations in reproducing kernel Hilbert space. This method cannot be used directly to solve these equations, so an equivalent transformation is made by u...
متن کاملNUMERICAL APPROACH TO SOLVE SINGULAR INTEGRAL EQUATIONS USING BPFS AND TAYLOR SERIES EXPANSION
In this paper, we give a numerical approach for approximating the solution of second kind Volterra integral equation with Logarithmic kernel using Block Pulse Functions (BPFs) and Taylor series expansion. Also, error analysis shows efficiency and applicability of the presented method. Finally, some numerical examples with exact solution are given.
متن کاملNonuniform sampling of bandlimited signals with polynomial growth on the real axis
We derive a sampling expansion for bandlimited signals with polynomial growth on the real axis. The sampling expansion uses nonuniformly spaced sampling points. But unlike other known sampling expansions for such signals, ours converge uniformly to the signal on any compact set. An estimate of the truncation error of such a series is also obtained.
متن کامل